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Abstract
Hydrodynamic surfaces are solutions of hydrodynamic-type systems viewed
as non-parametrized submanifolds of the hodograph space. We propose an
invariant differential-geometric characterization of hydrodynamic surfaces by
expressing the curvature form of the characteristic web in terms of the reciprocal
invariants.
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1. Introduction

Equations of hydrodynamic type

uit = wij (u)u
j
x i, j = 1, . . . , n (1)

naturally arise in applications in gas dynamics, hydrodynamics, chemical kinetics, the
Whitham averaging procedure, differential geometry and topological field theory. We
refer to [4, 13] for their geometric theory. Any solution ui(x, t) of system (1) defines a
surface in the hodograph space u1, . . . , un parametrized by the independent variables x and t.
Representing this surface explicitly in the form u3 = u3(u1, u2), . . . , un = un(u1, u2), one
can readily rewrite (1) as a system of PDEs for u3, . . . , un viewed as functions of u1, u2. For
n = 3 this will be a third-order quasilinear PDE for u3(u1, u2), known as the equation of a
hydrodynamic surface (by the term hydrodynamic surfaces we mean solutions of (1) viewed
as non-parametrized submanifolds of the hodograph space). This equation was derived by
Yanenko [14] and subsequently discussed in [12] in the case of one-dimensional polytropic
gas dynamics (see example 4 below). For 3-component systems in Riemann invariants, the
derivation of this equation is given in the appendix. Although, technically, this derivation
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does not cause any problems, the result is usually a rather complicated PDE. This is not
surprising since the choice of, say, u3 as a function of u1, u2 introduces an asymmetry in
our approach from the very beginning. Thus, it is desirable to have an invariant coordinate-
free description of hydrodynamic surfaces. In order to provide such a description (in what
follows we concentrate on the case n = 3), we first have to supply the hodograph space
with certain differential-geometric objects. These objects, known as the reciprocal invariants,
are introduced in section 3. Reciprocal invariants induce further geometric structure on any
hydrodynamic surface (see section 4), the characteristic 3-web being part of it. Calculating
the curvature of the characteristic 3-web in terms of the reciprocal invariants, we obtain a
simple invariant description of hydrodynamic surfaces (theorem 1). We apply our results
to linearly degenerate semi-Hamiltonian systems in Riemann invariants (section 5) and the
equations of associativity of two-dimensional topological field theory (section 6). In both
cases, the characteristic 3-web proves to be hexagonal, thereby providing a simple coordinate-
free description of hydrodynamic surfaces. We illustrate the concept of a hydrodynamic
surface by concluding this introduction with a list of examples.

Example 1. The general solution of the linear system

R1
t = 0 R2

x = 0 R3
t = R3

x (2)

is given by R1 = g1(x), R2 = g2(t), R3 = g3(x + t) where gi are arbitrary functions of their
arguments. These formulae can be rewritten as x = f 1(R1), t = f 2(R2),−x − t = f 3(R3)

where the functions f i are determined by gi . Adding these equations, we arrive at the
hydrodynamic surfaces

f 1(R1) + f 2(R2) + f 3(R3) = 0 (3)

in the hodograph space R1, R2, R3. Note that surfaces (3) solve the third-order PDE(
ln
R3

1

R3
2

)
12

= 0 (4)

which is thus the equation of a hydrodynamic surface. Here subscripts denote differentiation
with respect to R1 and R2.

Example 2. Let us consider the system

R1
t = (R2 + R3)R1

x R2
t = (R1 + R3)R2

x R3
t = (R1 + R2)R3

x (5)

which, upon the introduction of the new independent variables X and T ,

dX = dx + (R2 + R3) dt

(R1 − R2)(R1 − R3)
dT = dx + (R1 + R3) dt

(R2 − R1)(R2 − R3)
(6)

(note that these 1-forms are closed by virtue of (5)), takes the linear form (2). Transformations
of this type are called reciprocal. Since any reciprocal transformation is just a
reparametrization of solutions, hydrodynamic surfaces of both equations (2) and (5) are
the same, defined by PDE (4). This example is generalized in section 5 to arbitrary
3-component linearly degenerate semi-Hamiltonian systems in Riemann invariants, which
are all reciprocally related to (2) and, thus, have the same hydrodynamic surfaces.

Example 2 shows that the equation governing hydrodynamic surfaces must be expressible
in terms of reciprocal invariants, differential-geometric objects in the hodograph space which
do not change under reciprocal transformations.

Example 3. The equation of associativity of two-dimensional topological field theory

fttt = f 2
xxt − fxxxfxtt (7)
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Table 1. Hydrodynamic surfaces of the associativity equation.

Solution of (7) Hydrodynamic surface in the hodograph space a, b, c

f = x2 t2

4 + t5

60 Plane a = 0

f = xet − x4

24 Plane b = 0

f = x2et
4 + e2t

32 − x4

48 Quadric 2ab + c = 0

f = t2 ln x
2 + 3t2

4 Quadric b2 − ac = 0

f = x3 t
6 + x2 t3

6 + t7

210 Cayley cubic c− 2ab + 2a3 = 0

f = x3 t2

6 + x2 t5

20 + t11

3960 Quartic 4ac − 4a2(b − a2/2) = (b − a2/2)2

rewritten in the variables a = fxxx , b = fxxt , c = fxtt , takes the form of a 3-component
system of hydrodynamic type,

at = bx bt = cx ct = (b2 − ac)x. (8)

In table 1 we list the hydrodynamic surfaces (in the hodograph space a, b, c) corresponding
to some explicit solutions of equation (7) as found in [3].

It would be interesting to classify the solutions of (7) whose hydrodynamic surfaces are
algebraic. A differential-geometric characterization of hydrodynamic surfaces of system (8)
is given in section 6.

Example 4. In Lagrangian coordinates, the equations of one-dimensional polytropic gas
dynamics take the form

ut + pq = 0 ψp−κpt + uq = 0 ψt = 0 κ = γ + 1

γ
.

The equation governing hydrodynamic surfacesψ = ψ(p, u)was derived in [12]. After being
integrated once, it reduces to the second-order quasilinear PDE

(ψp−κψu)u − ψpp = f (ψ)
(
ψ2
p − ψp−κψ2

u

)
where f is an arbitrary function of ψ .

2. Exterior representation of hydrodynamic-type systems

Let vi be the eigenvalues of the matrix wij , called the characteristic velocities of system
(1), which we assume to be real and pairwise distinct. Let li = (

li1(u), . . . , l
i
n(u)

)
be the

corresponding left eigenvectors, lijw
j

k = vi lik. With the eigenforms ωi = lij duj , the system
(1) is readily rewritten in the exterior form,

ωi ∧ (dx + vidt) = 0 i = 1, . . . , n. (9)

Differentiation of ωi and vi gives the structure equations

dωi = −cijkωj ∧ ωk (
cijk = −cikj

)
dvi = vijω

j (10)

containing all the necessary information about the system under study. For diagonalizable
systems we have cijk = 0, so that ωi = dRi , where the variables Ri are called the Riemann
invariants of system (1). In Riemann invariants, equations (9) take a diagonal form,

Rit = vi(R)Rix i = 1, . . . , n. (11)

In this case vij = ∂vi/∂Rj .
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3. Reciprocal transformations and reciprocal invariants

We recall the necessary information about reciprocal transformations of hydrodynamic-type
systems. LetB(u) dx+A(u) dt andN(u) dx+M(u) dt be two conservation laws of system (1),
understood as the 1-forms which are closed by virtue of (1). In the new independent variables
X,T defined by

dX = B(u) dx +A(u) dt dT = N(u) dx +M(u) dt (12)

the system (1) takes the form

uiT = Wi
j (u)u

j

X (13)

whereW = (Bw − AE)(ME −Nw)−1, E = id. The new characteristic velocities V i are

V i = viB − A

M − viN
(14)

while the eigenforms ωi remain the same. Transformations (12) are called reciprocal. We
refer to [11] for the discussion of their applications in gas dynamics, hydrodynamics and
soliton theory. In [6–8] the author introduced a number of objects in the hodograph space
which prove to be reciprocally invariant. In the 3-component case these are

(1) Three two-dimensional characteristic distributions:

ωi = 0 i = 1, 2, 3. (15)

Note that the eigenforms ωi are only defined up to a nonzero multiple (ωi → piωi), so
that only these distributions make an invariant sense. It is natural to call these distributions
characteristic since, by virtue of (9), characteristic directions are the intersections of a
tangent plane to a hydrodynamic surface with the distributions (15).

(2) The 1-forms:

�1 = v1
1(v

2 − v3)

(v1 − v2)(v1 − v3)
ω1 �2 = v2

2(v
3 − v1)

(v2 − v1)(v2 − v3)
ω2

�3 = v3
3(v

1 − v2)

(v3 − v1)(v3 − v2)
ω3.

(16)

In the case vii �= 0 these 1-forms contain the information about the distributions (15). We
really need (15) only when some of the vii are zero.

(3) The differential d� of the 1-form:

� =
(
v2

1 − 1
2v

1
1

v1 − v2
+
v3

1 − 1
2v

1
1

v1 − v3

)
ω1 +

(
v1

2 − 1
2v

2
2

v2 − v1
+
v3

2 − 1
2v

2
2

v2 − v3

)
ω2

+

(
v1

3 − 1
2v

3
3

v3 − v1
+
v2

3 − 1
2v

3
3

v3 − v2

)
ω3 (17)

(note that � itself is not reciprocally invariant).

Remark. To prove the reciprocal invariance of these objects, it is sufficient to consider
reciprocal transformations of the two simpler types, namely

(a) The interchange of the independent variables x and t (A = N = 1, B = M = 0 in (12),
implying V i = 1/vi).
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(b) Transformations which preserve the variable t (N = 0,M = 1 implying V i = viB −A).
In both cases, the invariance of (16) and (17) is a result of a simple calculation. In the
case (b) one has to use the identities Ai = viBi (no summation!) which characterize
conservation laws of hydrodynamic-type systems. Here Ai and Bi are defined by the
expansions dA = Aiω

i, dB = Biω
i . Since an arbitrary reciprocal transformation is a

superposition of transformations (a) and (b), the statement follows.

Although the set of reciprocal invariants (16) and (17) is complete [6, 8], further invariants
can be easily constructed. For instance, the pseudo-Riemannian metric

�1�2 +�1�3 +�2�3 = v1
1v

2
2

(v1 − v2)2
ω1ω2 +

v1
1v

3
3

(v1 − v3)2
ω1ω3 +

v2
2v

3
3

(v2 − v3)2
ω2ω3

is also reciprocally invariant. The Lie-geometric interpretation of reciprocal invariants was
proposed in [10]. Note that for linearly degenerate systems (that is, for systems with vii = 0
for any i), some of the reciprocal invariants vanish. The only ones that survive are the 2-form
d� and the characteristic distributions (which are not involutive unless the system possesses
Riemann invariants). Reciprocal transformations are known to preserve the linear degeneracy.

4. Geometry of hydrodynamic surfaces

The following objects are naturally induced on hydrodynamic surfaces of 3-component systems
of hydrodynamic type.

The characteristic 3-web is a collection of three 1-parameter families of curves defined by
the equations ωi = 0. Geometrically, characteristic directions are intersections of the tangent
plane of a hydrodynamic surface with the two-dimensional characteristic distributions ωi = 0
in the hodograph space. For a 3-web on a surface, let φ1 and φ2 be the 1-forms such that the
curves of the first, second and third families are defined by the equations φ1 = 0, φ2 = 0 and
φ1 = φ2, respectively (actually, φ1 and φ2 are the properly normalizedω1 and ω2; their choice
is obviously non-unique since they can be multiplied by a common factor). The connection
form φ of a 3-web is uniquely determined by the exterior equations

dφ1 = φ ∧ φ1 dφ2 = φ ∧ φ2.

Finally, the curvature 2-form C equals dφ. It has an invariant meaning and does not depend
on the particular normalization of φ1 and φ2. For instance, in the case of 3-component
systems (11) in Riemann invariants we have ωi = dRi so that the characteristics are
defined by dR1 = 0, dR2 = 0 and dR3 = R3

1 dR1 + R3
2 dR2 = 0 (the hydrodynamic

surface is parametrized in the form R3(R1, R2)). Clearly, one can choose φ1 = R3
1 dR1

and φ2 = −R3
2 dR2, implying that the connection form is

φ = (
lnR3

1

)
2 dR2 +

(
lnR3

2

)
1 dR1.

The corresponding curvature 2-form is

C = dφ = (
lnR3

1 − lnR3
2

)
12 dR1 ∧ dR2.

We will use this expression when deriving the equation of hydrodynamic surfaces in the
appendix. Recall that the zero curvature webs are called hexagonal [2].

The form d� is just the restriction of the reciprocal invariant d� to a hydrodynamic
surface.

The forms ∗�i are defined as follows. Take, say, the reciprocally invariant form �1 and
restrict it to a hydrodynamic surface. On the same hydrodynamic surface, choose the metric



6888 E V Ferapontov

2 dR2 dR3 with the volume form dR2 ∧ dR3 (note the important order of indices 2 and 3 in
the expressions for�1 and the volume form). Construct the vector which is dual to the 1-form
�1 with respect to the metric chosen. Finally, evaluate the volume form on this vector. The
result will be a 1-form which is usually denoted by ∗�1. Note that in two dimensions the
∗-operator is conformally invariant, so that only the conformal class of the metric 2 dR2 dR3

matters. The ambiguity in the choice of the order of indices 2 and 3 in the expression for�1,
combined with the ambiguity in choosing the sign (orientation) of the volume form, gives a
well-defined answer for ∗�1. In general, for the 1-form

�i = vii (v
j − vk)

(vi − vj )(vi − vk)
dRi

the 1-form ∗�i is defined by choosing the metric 2 dRj dRk with the volume form dRj ∧ dRk.
The ∗-operator is invariant and can be applied in any convenient coordinate system leading to
one and the same result. The relevant computation is shown below in the proof of theorem 1.

Now we are in the position to formulate the main result of this paper.

Theorem 1. The curvature 2-form C of the characteristic 3-web is given by the formula

C = −d�− 1
2 d(∗�1 + ∗�2 + ∗�3). (18)

Written down in any suitable coordinate system in the hodograph space, equation (18) reduces
to a third-order PDE for hydrodynamic surfaces.

Proof. Note that equation (18) is manifestly coordinate-free. Thus, it suffices to establish
(18) in any local parametrization of a hydrodynamic surface. We will work directly in the
coordinates x, t . For simplicity, we assume that the system in question possesses Riemann
invariants. This assumption is not important and the general proof is literally the same.

Introducing the 1-forms

φ1 = (v2 − v3)(dx + v1 dt) and φ2 = (v1 − v3)(dx + v2 dt)

we readily see that the characteristics of the first, second and third families are defined by the
equations φ1 = 0, φ2 = 0 and φ1 = φ2, respectively. The connection form φ of the 3-web is
uniquely determined by the exterior equations

dφ1 = φ ∧ φ1 dφ2 = φ ∧ φ2. (19)

With φ = a dx + b dt, equation (19)1 gives

b − av1 = −v1
1R

1
x +

(
(v2 − v1)

v2
2 − v3

2

v2 − v3
− v1

2

)
R2
x +

(
(v3 − v1)

v2
3 − v3

3

v2 − v3
− v1

3

)
R3
x .

Similarly, equation (19)2 implies

b − av2 = −v2
2R

2
x +

(
(v1 − v2)

v1
1 − v3

1

v1 − v3
− v2

1

)
R1
x +

(
(v3 − v2)

v1
3 − v3

3

v1 − v3
− v2

3

)
R3
x .

Solving for a and b, we obtain

a =
(
v2

1 − v1
1

v2 − v1
+
v3

1 − v1
1

v3 − v1

)
R1
x +

(
v1

2 − v2
2

v1 − v2
+
v3

2 − v2
2

v3 − v2

)
R2
x +

(
v1

3 − v3
3

v1 − v3
+
v2

3 − v3
3

v2 − v3

)
R3
x

b =
(
v1v2

1 − v2v1
1

v2 − v1
+ v1 v

3
1 − v1

1

v3 − v1

)
R1
x +

(
v2v1

2 − v1v2
2

v1 − v2
+ v2 v

3
2 − v2

2

v3 − v2

)
R2
x

+

(
v3 v

1
3 − v3

3

v1 − v3
+ v3 v

2
3 − v3

3

v2 − v3
− v3

3

)
R3
x .
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Using the identities dRi = Rix(dx + vi dt), it is now a direct algebraic calculation to verify that

a dx + b dt = −� +
1

2
v1

1

(
dR1

v1 − v2
+

dR1

v1 − v3
− 2R1

x dt

)
+

1

2
v2

2

(
dR2

v2 − v1
+

dR2

v2 − v3
− 2R2

x dt

)

+
1

2
v3

3

(
dR3

v3 − v1
+

dR3

v3 − v2
− 2R3

x dt

)
(20)

where the last three terms are nothing but − 1
2 (∗�1),− 1

2 (∗�2) and − 1
2 (∗�3), respectively.

Indeed, let us calculate ∗�1. In coordinates x, t the 1-form �1 = v1
1(v

2 − v3) dR1/(v1 − v2)

(v1 − v3) has components(
µR1

x, µv
1R1

x

)
(21)

where µ = v1
1(v

2 − v3)/(v1 − v2)(v1 − v3). The metric used to define the ∗-operator is
2 dR2 dR3 = 2R2

xR
3
x(dx

2 + (v2 + v3) dx dt + v2v3 dt2) or, in matrix form,

R2
xR

3
x

(
2 v2 + v3

v2 + v3 2v2v3

)
(22)

with the inverse
1

R2
xR

3
x(v

3 − v2)2

(−2v2v3 v2 + v3

v2 + v3 −2

)
. (23)

The corresponding volume 2-form is

dR2 ∧ dR3 = R2
xR

3
x(v

3 − v2) dx ∧ dt . (24)

Multiplying (21) by (23), we obtain the vector (the dual of �1)

µR1
x

R2
xR

3
x(v

3 − v2)2
(v1(v2 + v3)− 2v2v3, v2 + v3 − 2v1). (25)

Finally, evaluating the volume 2-form (24) on the vector (25), we obtain the 1-form

∗�1 = µR1
x

v3 − v2
((v1(v2 + v3)− 2v2v3) dt − (v2 + v3 − 2v1) dx)

which, after a simple rearrangement of terms, can be rewritten as

∗�1 = v1
1

(
2R1

x dt − dR1

v1 − v2
− dR1

v1 − v3

)
.

Comparison with (20) and the exterior differentiation complete the proof. �

In the nondiagonalizable case, the proof is essentially the same. The only difference is
that we have to write ωi = pi(dx + vidt) instead of dRi = Rix(dx + vidt) and to replace Rix
by pi in all places where they appear. Another proof (which is more constructive, although it
only applies to systems in Riemann invariants) is given in the appendix.

5. Linearly degenerate semi-Hamiltonian systems in Riemann invariants

A system of hydrodynamic type in Riemann invariants,

Rit = vi(R)Rix

is called linearly degenerate if vii = 0 for any i. It is called semi-Hamiltonian if(
vij

vj − vi

)
k

=
(

vik

vk − vi

)
j
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for any i �= j �= k. The last condition is equivalent to the existence of an infinity of
conservation laws and hydrodynamic symmetries and the integrability of the system under
study by the generalized hodograph transform [13]. One can readily verify that the reciprocal
invariants d� and �1,�2,�3 of 3-component linearly degenerate semi-Hamiltonian systems
(the example of which is (5)) are zero. All such systems can be linearized by a reciprocal
transformation, and hydrodynamic surfaces thereof are governed by one and the same
PDE (4). Geometrically, hydrodynamic surfaces are uniquely characterized as the surfaces in
the hodograph spaceR1, R2, R3 on which the 3-web, cut by the coordinate planesRi = const,
is hexagonal. We refer to [5, 7] for a further discussion of the geometry of characteristic webs
on solutions of linearly degenerate semi-Hamiltonian systems.

6. Equations of associativity

It was demonstrated in [9] that system (8) can be transformed by a reciprocal transformation
into a system with constant characteristic velocities. Since for systems with constant
characteristic velocities the objects �1,�2,�3 and � are automatically zero, they are zero
for system (8) as well (in view of their reciprocal invariance). Thus, theorem 1 implies that
hydrodynamicsurfaces of (8) are uniquely characterized as surfaces on which the characteristic
3-web (cut by the characteristic distributions (15)) is hexagonal. These distributions have a
simple algebro-geometric description which we briefly discuss below (see also [1]).

In the hodograph space a, b, c consider the twisted cubic γ ,

a = −3t b = −3t2/2 c = −t3.

For any point p in the hodograph space, there are exactly three osculating planes of γ
containing p. In each of these planes, draw a line through p parallel to the tangential direction
to γ in the point where this plane osculates γ . Thus, one obtains three lines through each
point p in the hodograph space. These lines are the rarefaction curves of system (8). The three
two-dimensional characteristic distributions in question are spanned by each pair thereof.

This construction can be reformulated in a projectively invariant way as follows. Consider
a twisted cubic γ in the projective space P 3 and fix the plane � which osculates γ (in the
construction above this was the plane at infinity). Take any other plane π which osculates γ
in a point p. The tangent line to γ in the point p cuts � in the point A(p) (as p varies, the
collection of pointsA(p) is a conic in�). Finally, consider a pencil of lines in the planeπ with
the vertex inA(p). As p varies, this gives a 2-parameter family, or a congruence of lines in P 3,
which is of the order 3 (that is, there are precisely 3 lines of the congruence through a generic
point of P 3). The three two-dimensional distributions are spanned by each pair thereof. In
the case when � is the plane at infinity, this construction reduces to that described above.
Hydrodynamic surfaces in question are those on which these two-dimensional distributions
cut a hexagonal 3-web. These considerations and example 3 clearly indicate that it is of
interest to classify hydrodynamic surfaces which are algebraic.

Note that this problem makes sense for arbitrary congruences of the order 3 in P 3, since
any such congruence induces a 3-web on a surface.
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Appendix. Another proof of theorem 1

We will derive the equation of a hydrodynamic surface for 3-component systems in Riemann
invariants assuming R3 = R3(R1, R2). We use the notation R3

1, R
3
2 for partial derivatives of

R3 with respect to R1 and R2 which are now viewed as independent variables. By virtue of
(11), one has

dR1 = p1(dx + v1dt) dR2 = p2(dx + v2dt) dR3 = p3(dx + v3dt) (26)

(here pi = Rix). On the other hand,

dR3 = R3
1 dR1 + R3

2 dR2 = R3
1p

1(dx + v1dt) + R3
2p

2(dx + v2 dt)

implying

R3
1p

1 + R3
2p

2 = p3 R3
1p

1v1 + R3
2p

2v2 = p3v3

so that

p1 = v2 − v3

v2 − v1

p3

R3
1

p2 = v1 − v3

v1 − v2

p3

R3
2

.

Substituting these expressions into the first two equations (26), we obtain

dx + v1dt = v2 − v1

v2 − v3

R3
1

p3
dR1 dx + v2dt = v1 − v2

v1 − v3

R3
2

p3
dR2

so that

dt = R3
1

v3 − v2

1

p3
dR1 +

R3
2

v3 − v1

1

p3
dR2 dx = R3

1

v2 − v3

v2

p3
dR1 +

R3
2

v1 − v3

v1

p3
dR2.

Introducing g by the formula 1/p3 = eg(v3 − v1)(v3 − v2), we ultimately have

dt = eg
(
R3

1(v
3 − v1) dR1 + R3

2(v
3 − v2) dR2)

dx = eg
(
R3

1(v
1 − v3)v2 dR1 + R3

2(v
2 − v3)v1 dR2

)
.

(27)

With dg = g1 dR1 + g2 dR2 the differentiation of (27)1 implies

g1R
3
2(v

3 − v2)− g2R
3
1(v

3 − v1) + R3
12(v

1 − v2) + R3
2

(
v3

1 − v2
1

)
+ R3

1

(
v3

2 − v1
2

)
+R3

1R
3
2

(
v1

3 − v2
3

) = 0.

Similarly, the differentiation of (27)2 gives

g1R
3
2(v

3 − v2)v1 − g2R
3
1(v

3 − v1)v2 + R3
12(v

1 − v2)v3 + R3
2

(
v1
(
v3

1 − v2
1

)
+ v1

1(v
3 − v2)

)
+R3

1

(
v2 (v3

2 − v1
2

)
+ v2

2(v
3 − v1)

)
+ R3

1R
3
2

(
v3 (v1

3 − v2
3

)
+ (v1 − v2)v3

3

) = 0.

Solving these equations for g1 and g2, one readily obtains

−g1 = R3
12

R3
2

+
v1

1

v1 − v2
+
v3

1 − v2
1

v3 − v2
+
R3

1

R3
2

v2
2(v

1 − v3)

(v2 − v1)(v2 − v3)
+ R3

1

(
v3

3

v3 − v2
+
v1

3 − v2
3

v1 − v2

)
and

−g2 = R3
12

R3
1

+
v2

2

v2 − v1
+
v3

2 − v1
2

v3 − v1
+
R3

2

R3
1

v1
1(v

2 − v3)

(v1 − v2)(v1 − v3)
+ R3

2

(
v3

3

v3 − v1
+
v1

3 − v2
3

v1 − v2

)
or, in differential form,

−dg = R3
12

R3
2

dR1 +
R3

12

R3
1

dR2 +
v1

1

v1 − v2
dR1 +

v2
2

v2 − v1
dR2 +

v3
1 − v2

1

v3 − v2
dR1 +

v3
2 − v1

2

v3 − v1
dR2

+
v1

3 − v2
3

v1 − v2
dR3 +

R3
1

R3
2

v2
2(v

1 − v3)

(v2 − v1)(v2 − v3)
dR1 +

R3
2

R3
1

v1
1(v

2 − v3)

(v1 − v2)(v1 − v3)
dR2

+R3
1

v3
3

v3 − v2
dR1 + R3

2
v3

3

v3 − v1
dR2.
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It is now a direct algebraic calculation to verify that terms in the last equation can be rearranged
in such a way that it becomes

−dg − d ln(v1 − v2)(v1 − v3)(v2 − v3) =
(
R3

12

R3
2

dR1 +
R3

12

R3
1

dR2

)
+�

+
v1

1(v
2 − v3)

(v1 − v2)(v1 − v3)

(
1

2
dR1 +

R3
2

R3
1

dR2

)
+

v2
2(v

1 − v3)

(v2 − v1)(v2 − v3)

×
(

1

2
dR2 +

R3
1

R3
2

dR1

)
+

1

2

v3
3(v

1 − v2)

(v3 − v1)(v3 − v2)

(
R3

2 dR2 − R3
1 dR1) . (28)

Now, the first term on the right,

R3
12

R3
2

dR1 +
R3

12

R3
1

dR2

is the connection form of the characteristic 3-web; its differential is the curvature form of the
web. The form � is defined in section 3 (recall that its differential is reciprocally invariant).
The last three forms on the right are nothing but ∗�1/2, ∗�2/2 and ∗�3/2, respectively.
Finally, the differentiation of (28) completes the proof.

Note that this proof is constructive: once a hydrodynamic surface is given, it can be
parametrized by the independent variables t, x according to formulae (27), where g is given
by (28). This parametrization is unique up to the obvious symmetries x → cx + a, t → ct + b
where a, b and c are constants.
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